Skip to Main Content
Skip to Library Help widget

Manufacturing Systems Engineering and Management

What Manufacturing Systems Engineers Do

 Industrial engineers find ways to eliminate wastefulness in production processes. They devise efficient systems that integrate workers, machines, materials, information, and energy to make a product or provide a service.

Duties

Industrial engineers typically do the following:

  • Review production schedules, engineering specifications, process flows, and other information to understand methods that are applied and activities that take place in manufacturing and services
  • Figure out how to manufacture parts or products, or deliver services, with maximum efficiency
  • Develop management control systems to make financial planning and cost analysis more efficient
  • Enact quality control procedures to resolve production problems or minimize costs
  • Design control systems to coordinate activities and production planning in order to ensure that products meet quality standards
  • Confer with clients about product specifications, vendors about purchases, management personnel about manufacturing capabilities, and staff about the status of projects

Industrial engineers apply their skills to many different situations, from manufacturing to healthcare systems to business administration. For example, they design systems for

  • moving heavy parts within manufacturing plants
  • delivering goods from a company to customers, including finding the most profitable places to locate manufacturing or processing plants
  • evaluating job performance
  • paying workers.

Some industrial engineers, called manufacturing engineers, focus entirely on the automated aspects of manufacturing processes. They design manufacturing systems to optimize the use of computer networks, robots, and materials.

Industrial engineers focus on how to get the work done most efficiently, balancing many factors, such as time, number of workers needed, available technology, actions workers need to take, achieving the end product with no errors, workers’ safety, environmental concerns, and cost.

The versatility of industrial engineers allows them to engage in activities that are useful to a variety of businesses, governments, and nonprofits. For example, industrial engineers engage in supply chain management to help businesses minimize inventory costs, conduct quality assurance activities to help businesses keep their customer bases satisfied, and work in the growing field of project management as industries across the economy seek to control costs and maximize efficiencies.

Bureau of Labor Statistics, U.S. Department of Labor, Occupational Outlook Handbook, Industrial Engineers, 
on the Internet at https://www.bls.gov/ooh/architecture-and-engineering/industrial-engineers.htm#tab-2​ (visited March 27, 2023).

How to Become a Manufacturing Systems Engineer

Industrial engineers typically need a bachelor’s degree. Some employers prefer to hire candidates who have experience, so cooperative-education programs at universities may be beneficial.

Education

Industrial engineers typically need a bachelor’s degree in industrial engineering or industrial engineering technologies. However, many industrial engineers have degrees in mechanical engineering, electrical engineering, manufacturing engineering, or general engineering.

Bachelor’s degree programs include lectures in classrooms and practice in laboratories. Courses include statistics, production systems planning, and manufacturing systems design, among others. Many colleges and universities offer cooperative education programs in which students gain practical experience while completing their education.

Several colleges and universities offer 5-year degree programs in industrial engineering that lead to a bachelor’s and master’s degree upon completion, and several more offer similar programs in mechanical engineering. A graduate degree allows an engineer to work as a professor at a college or university or to engage in research and development. Some 5-year or even 6-year cooperative education plans combine classroom study with practical work, permitting students to gain experience and to finance part of their education.

Programs in industrial engineering are accredited by ABET.

Important Qualities

Creativity. Industrial engineers use creativity and ingenuity to design new production processes in many kinds of settings in order to reduce the use of material resources, time, or labor while accomplishing the same goal.

Critical-thinking skills. Industrial engineers create new systems to solve problems related to waste and inefficiency. Solving these problems requires logic and reasoning to identify strengths and weaknesses of alternative solutions, conclusions, or approaches to the problems.

Listening skills. These engineers often operate in teams, but they also must solicit feedback from customers, vendors, and production staff. They must listen to customers and clients in order to fully grasp ideas and problems.

Math skills. Industrial engineers use the principles of calculus, trigonometry, and other advanced topics in mathematics for analysis, design, and troubleshooting in their work.

Problem-solving skills. In designing facilities for manufacturing and processes for providing services, these engineers deal with several issues at once, from workers’ safety to quality assurance.

Speaking skills. Industrial engineers sometimes have to explain their instructions to production staff or technicians before they can make written instructions available. Being able to explain concepts clearly and quickly is crucial to preventing costly mistakes and loss of time.

Writing skills. Industrial engineers must prepare documentation for other engineers or scientists, or for future reference. The documentation must be coherent and explain their thinking clearly so that the others can understand the information.

Licenses, Certifications, and Registrations

Licensure is not required for entry-level positions as an industrial engineer. A Professional Engineering (PE) license, which allows for higher levels of leadership and independence, can be acquired later in one’s career. Licensed engineers are called professional engineers (PEs). A PE can oversee the work of other engineers, sign off on projects, and provide services directly to the public. State licensure generally requires

  • A degree from an ABET-accredited engineering program
  • A  passing score on the Fundamentals of Engineering (FE) exam
  • Relevant work experience, typically at least 4 years
  • A passing score on the Professional Engineering (PE) exam.

The initial FE exam can be taken after one earns a bachelor’s degree. Engineers who pass this exam are commonly called engineers in training (EITs) or engineer interns (EIs). After meeting work experience requirements, EITs and EIs can take the second exam, called the Principles and Practice of Engineering.

Each state issues its own licenses. Most states recognize licensure from other states, as long as the licensing state’s requirements meet or exceed their own licensure requirements. Several states require continuing education for engineers to keep their licenses.

The Society of Manufacturing Engineers offers certification, which requires a minimum of 8 years of a combination of education related to manufacturing and at least 4 years of work experience.

Other Experience

During high school, students can attend engineering summer camps to see what these and other engineers do. Attending these camps can help students plan their coursework for the remainder of their time in high school. 

Advancement

Industrial engineers who are just starting out usually work under the supervision of experienced engineers. In large companies, new engineers also may receive formal training in classes or seminars. As beginning engineers gain knowledge and experience, they move on to more difficult projects with greater independence to develop designs, solve problems, and make decisions.

Eventually, industrial engineers may advance to become technical specialists, such as quality engineers or facility planners. In that role, they supervise a team of engineers and technicians. Earning a master’s degree facilitates such specialization and thus advancement.

Many industrial engineers move into management positions because the work they do is closely related to the work of managers.

Bureau of Labor Statistics, U.S. Department of Labor, Occupational Outlook Handbook, Industrial Engineers, 
on the Internet at https://www.bls.gov/ooh/architecture-and-engineering/industrial-engineers.htm#tab-4​ (visited March 27, 2023).

Report ADA Problems with Library Services and Resources